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Boundary conditions for the discrete wave equation which act like an infinite region 
of free space in contact with the computational region can be constructed using projection 
operators. Propagating and evanescent waves coming from within the computational 
region generate no reflected waves as they cross the boundary. At the same time ar- 
bitrary waves may be launched into the computational region. Well-known projection 
operators for one-dimensional waves may be used for this purpose in one dimension. 
Extensions of these operators to higher dimensions along with numerically efficient 
approximations to them are described for higher-dimensional problems. The separa- 
tion of waves into ingoing and outgoing waves inherent in these boundary conditions 
greatly facilitates diagnostics. 

I. INTRODUCTION 

A large class of computational problems exists in which reflection of waves back 
into the computational region by the boundaries is undesirable. In many of these 
the simultaneous launching of known waves into the computational region is also 
required. Since computer restrictions put a limit on the size of a region which can 
be handled, placing the boundaries a long way from the region of computational 
interest is impractical. Thus the need for boundary conditions which act as an 
infinite region of free space is apparent. 

The primary requirement of such a boundary is the ability to absorb waves 
incident upon it rather than reflect them. A narrow region in which a dissipation 
is added to the wave equation is an obvious possible approach. Thus waves 
impinging on such a boundary are damped on the way in, reflected by a 
conventional boundary condition, and damped further on the way out. This 
technique, though not altogether useless, suffers from the following disadvantage. 
To get substantial absorption over a wide range of angles and wavelengths, the 
dissipation must occupy a region which is several of the largest wavelengths in 
width. The region is thus not particularly narrow and is, of course, not available 
for computing the problem of interest. 
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A similar approach using a system of dashpots has been formulated by Lysmer 
and Kuhlemeyer [l]. For a narrow range of frequencies, and hence wavelength, 
they obtain reasonable results for a wide range of angles. An interesting approach 
involving the propagation of D’Alembert forces has been considered by Ang and 
Newmark [2]. A method which is exact to roundoff has been discussed by Smith [3]. 
This method requires the integration over the full computational mesh of 2n wave 
equations where n is the number of boundaries at which zero-reflection is desired. 
It is thus computationally inefficient. Elvius and Sundstrom [4] discuss a method in 
which information about the characteristics of the wave equation of interest is used 
to construct an absorbing boundary. Their results are inconclusive and they suggest 
that further work is required. Approximate methods based on extrapolation are 
discussed by Chen [5]. 

The work presented here is based on projection operators. These can be defined 
exactly for the problems of interest, but, in the interest of numerical efficiency, 
approximations are introduced. Early unpublished work by Freidberg and Morse 
led to an extremely efficient method for the one-dimensional problem. No pro- 
cessing of past data was required and, of course, the projection operator methods 
only use data at the boundary. An improved version of their method is briefly 
discussed in Section III. C. W. Nielson’s unpublished extension of this work to the 
absorption of all waves traveling at a fixed predetermined angle to the boundary 
in two- and three-dimensional problems is also mentioned. 

II. ANALYSIS OF BOUNDARY CONDITIONS 

Consider the simplest differencing of the two-dimensional wave equations 

(Aza/Dz2) A + (A,2/Dv2) A = (AJc~T~) A, (1) 

where As2 is the second-central difference in x, etc., D, and D, are the mesh 
spacings in x and y, and T is the time step. A = A!,, is defined only at discrete 
points in space x = ID, and y = mD, and discrete points in time t = jr. This 
difference equation has plane wave solutions of the form 

Aism = A exp i[k,lD, + k,mD, - wjT], (2) 

where w, k, , and k, satisfy the dispersion relation 

sin2 (&oT) = (cT/D,)~ sin2 ($k,D,) + (cT/D,)~ sin2 (ik,D,,). (3) 

If a plane wave such as this impinges on a fixed boundary at x = xmax , the addi- 
tional function required to satisfy the boundary condition must have the same 
frequency, w, and wavenumber, k, , along the boundary. Since the dispersion 
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relation is symmetric in k, , only waves with k, = -k, can be used to satisfy the 
boundary condition. Most common boundary conditions require the presence of a 
wave with k, = -k, in addition to the incident wave to be satisfied and, hence, 
reflection is generated. 

A general disturbance in the medium can, of course, be represented as a sum or 
integral (depending on the boundary conditions) over the kp’s, kg’s, and o’s subject 
to the restriction that the dispersion relation be satisfied for the individual com- 
ponents. Thus if a boundary condition is constructed that is a linear operation 
and is satisfied by all outgoing waves (w/k, > 0) with values of w, k, , and k, 
consistent with the dispersion relation, it will absorb a general disturbance incident 
upon it. 

From the above discussion it is clear that the analysis of the reflection generated 
by various boundary conditions is best carried out in Fourier space (w, k, , and k, 
space). The boundary conditions to be discussed are themselves most simply 
formulated in Fourier space. Their complicated operator character arises only 
upon translating the simple multiplicative functions of w and k, which are required 
back into y and t space for use in time dependent simulation problems. 

A boundary condition for a difference equation which contains second order 
differences in space is a relation between the value of the function and its first 
normal derivative. This relation may include other functions of time, of course. In 
a time dependent problem past values of the function in the computational region 
and at the boundary are in principle available and can be included in the above 
additional functions of time along with information regarding waves to be launched 
into the medium. The best boundary condition uses a minimum of past data stored 
in a form which minimizes the additional storage and the additional operations 
required to process these data. The boundary conditions to be described below 
require past data only at the boundary and the updating of three to six functions 
of these data which are then combined with the information regarding waves to be 
launched at the boundary. They are, thus, quite efficient and are capable of gene- 
rating reflection coefficients less than 1% over a wide range of frequencies and 
angles. 

III. PROJECTION OPERATORS IN BOUNDARY CONDITIONS 

Consider the boundary condition 

A, and A, are forward differences, while u= and ot are forward sums (e.g. ozA~,, = 
A!.m + A:,,,, ) introduced to obtain centering. With suitably chosen operator, G, 
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the LHS of Eq. (4) is a projection operation which projects out left-going waves 
only with the plus sign and right-going waves only with the minus sign. 

The RHS is a source function which launches waves back into the computa- 
tional region if it is nonzero. Consider a solution of the wave equation which 
consists of a wave propagating to the right with amplitude R, and a wave propaga- 
ting to the left with amplitude L, and a source function with the same y and t 
dependence. 

Ai,,, = [R exp(ik,ZD,) + L exp(--ik,lD,)] exp i(k,mD, - a$-), 

S,j = S exp i(k,mD, - ujr). (5) 

Substituting Eqs. (5) into Eq. (4) with the plus sign leads to an expression for the 
amplitude of the left-going wave in terms of the amplitude of the right-going wave 
and the source. 

L exp[-ik,(l + 4) D,l = [(G - G,)/(G + Go)1 R exp[W + 9 D,I 
+ PG secWA)l(G + WI S, (6) 

where 
Go = (D,/cT)[tan(+~)/tan(~kZDJ] (7) 

and G is G in (0, k)-space. Setting S = 0, and ignoring the factors which relate the 
complex L and R to their values at x = 0, gives the reflection coefficient which 
depends on G. 

R, = L/R = (G - G,)/(G + G,,). (8) 

If G = Go the reflection coefficient is zero. Thus the problem reduces to finding 
numerically useful approximations to the operator G, . 

It is instructive to consider the limiting case 7, D, , D, + 0. In this limit G, = 
w/ck, = set 0, where 13 is the angle between k and the x-direction for propagating 
waves. In one-dimension, Go = 1 and its operator character is important only for 
waves which are being treated unphysically anyway. A boundary condition similar 
to Eq. (4) with G = 1 was obtained some years ago by Freidberg and Morse at 
Los Alamos and has been used extensively in one-dimensional codes since that 
time. C. W. Nielson further showed that an extension of this one-dimensional 
boundary condition, namely G = set 8, , could be used in two and three dimen- 
sions to absorb all waves traveling at the fixed angle, 0, , with respect to the x-axis. 

The author was the first to formulate the problem as described above and con- 
struct a numerically useful operator for G which would absorb waves at all angles 
in a two-dimensional system [6]. An approximate form for G;l was obtained 
similar to the one to be described below. Coefficients were evaluated by minimizing 
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the reflection coefficient over a range of angles from 8 = 1 to 89” such that RG < .Ol 
over the range. Further details can be found in Ref. [6]. 

This boundary condition has been superceded by the two described below. It was 
found that equally good absorption could be obtained by approximating G, 
instead of G;l and in doing so the time derivatives of the ingoing and outgoing 
waves were directly available for diagnostics rather than the normal derivatives. It 
was also found more convenient to supply the time derivatives of the ingoing waves 
as in Eq. (4) rather than the normal derivative which was required by the boundary 
condition in Ref. [6]. 

IV. BOUNDARY CCINDITION FOR TRAVELING WAVES ONLY 

A useful approximation to G, for cases in which all waves to be encountered are 
traveling waves can be obtained as follows. Note first that 

Go = w/ck, = [l - (c”k,“/w2)]-‘1” (9) 

in the limit D, , D, , T --t 0. G, can be written as an operation in space and time in 
the following way. 

6, g-g [l - (cT/D~)“(A~~/A,~)]-~/~. (10) 

The simple power series expansion suggests itself as a first approach, but, aside 
from the fact that it converges slowly, it is unstable in time [6]. Thus it is numerically 
useless. The following expression, however, is stable and leads to an excellent 
approximation for cky/w < 1. 

where 

e=1+ :A, 01) 
n=l 

4cdDd2 (Av2/A t”> 
Jn = 1 - /?&T/.&)2 (4,2/4 t2) ’ (12) 

Substituting this for G into Eq. (4) leads to the following expression for the bound- 
ary condition. 

(13) 

(14) 
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The meaning of Eq. (14) is made clear by rewritting it as follows. 

Thus the h’s are correction functions to the one-dimensional boundary condition 
which are functions of past data at the boundary. As the problem proceeds in time 
these quantities must be updated using Eq. (15). Since they are not functions of the 
A’s at the point in time at which the boundary condition is applied, they are 
updated first. Equation (13) is then solved implicity for the “ghost” cell values 
needed to apply the boundary condition. 

Having obtained an explicit statement of the boundary condition, Eqs. (13)-( 15), 
one can analyze it exactly in Fourier space as previously described. Reflection 
coefficients as a function of k, and w, or in terms of angle of propagation measured 
from the normal can then be calculated. In order to obtain reflection coefficients 
less than 0.01 for a range of angles from 0” to 89”, N = 3 terms in 6 are required. 
The values of 01, and pn are then obtained by mimimizing the following function. 

Best results were obtained using as the weighting function W(0) = (cos O)rlz. 
For a set of 2s and /3’s obtained in this manner the resulting reflection coefficient 

Angle (deg) 

FIG. 1. The reflection coefficient vs angle of propagation measured from normal is presented 
for the boundary condition described by Eqs. (13)-(H) with N = 3. The three values of a used 
were 0.3264, 0.1272, and 0.0309, and the corresponding values of fl were 0.7375, 0.98384, and 
0.9996472 respectively. Other parameters were c = 1, T = 0.0654, and D, = D, = 0.1. The 
data points are measured values of the reflection coefficient for w = 1. 
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as a function of 0 is shown in Fig. 1. The reflection coefficient rises as the frequency 
increases and numerical dispersion increasingly affects the waves. In cases where 
these waves must be absorbed with a high degree of accuracy the form of & must 
be suitably modified. This form of e, however, is quite adequate for waves in the 
physically accurate regime even for other methods of differencing the wave equa- 
tion. It should also be noted that the values of the /&‘s are all less than one. Hence 
the Courant conditions for the boundary functions are less restrictive than that for 
the interior. 

The data points shown Fig. 1 are measured values of the reflection coefficient. 
Equation (1) was solved on a two-dimensional mesh using periodic boundary 
conditions in y. Equations (13)-(15) were used for the boundary conditions in X. 
The plus sign was used at the right boundary, while the minus sign was used at the 
left. The problem was initialized with A and its time derivative everywhere equal to 
zero. The boundary correction functions were also initialized with their values and 
time derivatives equal to zero. The source at the right boundary was zero 
throughout, while at the left boundary a wave was launched with a fixed k, as 
follows. 

4_4 S,j = f, (G) sin(jT - k,mD,), 7 

I 
WP) s f,($) = [r(p)]2 s Ml - u)F du, O<s<l, o 

1, s > 1. 

T = 30 with p = 2 was used for the points at 0 = 14” and 29”, while T = 500 
with p = 4 was used at 0 = 19”. 

To measure the amplitude of the reflected wave returning to the left boundary, 
the projection operator for left-traveling waves was applied at the left boundary. 
After evaluating the terms on the LHS of Eq. (4) by requiring that their difference 
be determined by the source, i.e. by applying the boundary condition, their values 
may be combined with the plus sign to obtain information about the reflected wave. 
In most cases of practical interest the amplitude of the returning wave is a sizeable 
fraction of the launched wave; the errors in the projection operator are negligible; 
and the desired information is obtained directly. In this case, however, the errors 
in the projection operator operating on the launched wave are the same order of 
magnitude as the amplitude of the returning wave. Hence it is necessary to obtain 
an expression for the output of the projection operator in terms of the errors in 
the projection operators at both boundaries. The contributions from both bound- 
aries to this expression can be written in terms of the reflection coefficients at the 
two boundaries which are the same. This expression is then solved for the reflection 
coefficient in terms of the output of the projection operator, the k, of the wave 
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in the intervening region and separation between the boundaries. The resulting 
values of the reflection coefficient are plotted in Fig. 1. 

The error bars reflect, primarily, the effects of the finite turn-on time of the 
wave. The resulting frequency spread translates into a spread in angles, 88, as 
follows. 

88 g -tan ~(&J/cIJ). 

For the points at 14” and 29”, the angular spread occupies a range of angles which 
is handled well by the boundary condition. Hence the error bars are small. At 79”, 
however, a small but nonnegligible fraction of the energy was radiated at 90” and 
beyond, i.e. in the evanescent region where the boundary condition is admittedly 
incorrect. Undamped resonances in the boundary whose energy cannot be radiated 
away because their frequencies correspond to evanescent waves were driven up. 
These oscillations are superimposed on the oscillations of interest and can only be 
separated out by Fourier analyzing over many oscillations, which was not done. 
When this case was done with a p = 2, T = 30 turn-on, a sizeable fraction, 10 % 
to 20 %, of the energy was radiated in the evanescent regime, and the reflection 
coefficient was effectively unmeasurable. It is therefore concluded that this 
boundary condition is useful for angles up to 60” or 70” when reasonable amplitude 
fluctuations in time are assumed, i.e., So/w 5 0.1. 

V. BOUNDARY CONDITION FOR TRAVELING AND EVANESCENT WAVES 

In some problems evanescent waves having ck,/w > 1 arise. These waves will 
not be handled correctly by the boundary condition described in Section IV. 
Boundary conditions that handle these waves with the same degree of accuracy 
while simultaneously handling propagating waves as before, however, can be 
constructed. Approximately twice as much additional storage is required as well 
as a factor of more than 2 in time to update the auxiliary quantities. 

The expressions of interest for evanescent waves, ck,/w > 1, may be obtained 
from Eqs. (2)-(8) by replacing k, with K, , K, > 0. Right-traveling waves become 
exponentially decreasing to the right consistent with their sources’ being located in 
the computational region, while left-traveling waves become exponentially de- 
creasing away from the boundary consistent with the boundary’s being their source. 
In Fourier space G, may now be defined over the range 0 < 1 ck,/w 1 < co as 
follows. 

Go = 
I 
(D3E/c7)[tan(aw7)ltan(Sk,D,)1, kz2 > 0, 
(D&T)[tan(+wT)/i tanh(&KZDZ)], Kz2 > 0. 05) 
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The problem thus reduces to the search for numerically useful approximations to 
G, over the extended range. 

In order to motivate the choice of G, consider the expression G, in the evanescent 
region for D, , D, , T + 0. In this limit, the dispersion relation may be combined 
with Eq. (16) to obtain the following expression. 

Go=+ 

z [l - (&k,“)]l’” # * (17) 

Introducingian approximate expression for the reciprocal square root similar to 
that used before, one obtains 

G=f an (-iw> 
n=l 1 - &(~2/c2k~2) c I k, I 

If -io is replaced by d&, the resultant operator involves integrations in time 
only. Hence only past data are required to evaluate it. Along with the previously 
encountered derivatives in y obtained when -kg2 is replaced by Di2Av2, this 
expression involves the operation / A, I . If one chooses to work with boundary 
data Fourier analyzed in y, this operation is simply multiplication of each Fourier 
component by the appropriate constant, 1 2 sin(&k,D,)] . When the boundary 
conditions in y allow a finite Fourier series, working with the Fourier components 
in this manner appears to be the best procedure. When such a Fourier series is not 
allowed, this operator may be defined as follows. Consider an arbitrary function 
of y; Fourier transform in y; replace each Fourier component by its value multi- 
plied by / 2 sin(&kvDr)\ ; and then perform the inverse. This procedure leads to the 
following “integral” expression for ] A, 1 when a finite Fourier series is allowed. 

where 

r](m, m’) = (2/M){sin(7r/M)/cos[2n(m - m’)/M] - cos[7~/M]). 

In the limit M + co, the following expression for 7 is obtained which is the desired 
result. 

q(m, m’) = (4/7r){l/[l - 4(m - m’)2]}. @O> 
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The final realization of this operator on a finite domain will then depend on the 
choice of boundary conditions in y. 

One can proceed in this manner and obtain an explicit form for a boundary 
condition which handles evanescent waves correctly but does not handle propa- 
gating waves correctly. It will have undamped resonances in the propagating 
region. Moreover the Courant condition on the boundary functions will be more 
restrictive than the Courant condition for the interior. It is, therefore, probably 
not of general interest. 

To obtain an expression for G in the more general case, it is reasonable to 
attempt to combine expressions valid in the two regions in some way. Combining 
expressions obtained from Eqs. (1 l)-(13) in the limit D, , D, , T -+ 0 with Eq. (18) 
the following expression is obtained. 

This expression is inadequate, of course, because each term is nonzero in the 
region where the other by itself is accurate. In the propagating region, ck,,w < 1, 
G should be purely real, but an imaginary part is introduced by the expression 
required in the evanescent region. Similarly in the evanescent region G should be 
purely imaginary but a real part is introduced by the expression required in the 
propagating region. It can be shown, however, that the inclusion of damping 
terms in the “wave equations” in the denominators leads to terms which can 
effectively cancel these unwanted contributions in both regions. Furthermore, 
when the reflection coefficient that is obtained from such an expansion is minimized 
to obtain the optimum values of the 01’s, Z’s, /3’s, ,I!?%, and the newly added y’s and 
7s it is found that /& = j?m = 1, 01, = 2%) and y,, = yn for all n. 

For these reasons the following choice is made. 

(4QJ2 G’.2/&) + G’/dU - ~n)WDv)(l “, I/d,) 
+ (43 mWD,)(l 4, I&) - (c~T~/D,~)(~,~/~~) I ’ (22) 

with the restrictions Cf=‘=, (Y,, = 1, ck, any,, = 1. The ul’s are backward or 
forward summation operators used to obtain centering in the final equations. In a 
code in which boundary conditions in y allow a discrete Fourier analysis it is most 
reasonable to work with Fourier components in y since they will probably be 
desired for diagnostic purpose anyway. 

Assuming that the fields have been Fourier analyzed in y, m is now the Fourier 
component index, and F, = (2c~/D,)l sin(rrm/llri)l , Eq. (22) can be rewritten in the 
following form. 
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e = f % [1+ (6Fm”W) + WN - Yn)(F*I4 1 + (42) Yn(F?nlA t) + Wm”Pt2) 1 . (23) 
a=1 

Substituting this expression for G into Eq. (4) gives the boundary condition 

And the correction functions, h, must satisfy the equation 

(A,2 + &4%-d + F,n’) ht$,!2 = 4--Fm2~, + 20 - y,J FAI Adz,, . (25) 

On the LHS of Eq. (25) the &J,A, indicates an average time difference centered 
on j + 4. This choice of time differencing makes the Courant condition on 
the boundary functions less restrictive than the Courant condition for the 
interior. The correction functions, h, play the same role as those discussed in 
Section IV, and the procedure for applying the boundary condition is identical to 
the procedure presented in Section IV. 

By Fourier analyzing Eqs. (24)-(25) an explicit expression for the reflection 
coefficient as a function of sin(u) = (cT/D~ sin(&DJsin(+) can be obtained. 
By minimizing the square of the magnitude of the reflection coefficient over a 
suitable range of sin(u) as was discussed in Section IV, optimum values of 01, and yn 
were obtained. It was found that N = 6 terms were required to obtain reflection 
coefficients less than 0.01 everywhere except at the singular point sin(u) = 1, which 
is the boundary between the propagating region and the evanescent region. 
Figures 2 and 3 show the reflection coefficients obtained in this manner as a 
function of sin(u). The large reflection coefficient for w = 3 at large values of sin(u) 
results from numerical dispersion. When these waves are important smaller values 
of D, and D, are required to describe them accurately in the interior and recover 
the desired boundary condition properties. 

The data points shown in Figs. 2 and 3 are measured values of the magnitude of 
the reflection coefficient. They were obtained using the procedure outlined in 
Section IV. The points at sin(u) = 0.24,0.49, and 1.96 were obtained with a 
p = 2, T = 30 turn-on of the source, while the points at sin(u) = .982 and 1.033 
were obtained with a p = 4, T = 500 turn-on. Although errors due to the turn-on 
were larger in the neighborhood of sin(u) = 1, the difficulties observed at 79” in 
Section IV were not obtained. Even with ap = 2, T = 30 turn-on the errors in the 
reflection coefficient were always less than its value. To obtain an accurate measure 
of the value of the reflection coefficient at a well-defined angle, however, a very 
slow turn-on was required. 



FREE-SPACE BOUNDARIES 77 

0 0.5 1.0 1.5 i..o 
Sin (u) 

FIG. 2. The reflection coefficient vs sin(u) is presented for the boundary condition described 
in Eqs. (21x22) with N = 6. Sin(u) = (CT/&) sin(&,DJ/sin(&). The six values of 01 used were 
0.5155, 0.2723, 0.1232, 0.05541, 0.02333, and 0.01030, and the corresponding values of y were 
1.6543, 0.4922, 0.09891, 0.01637, 0.002062, and 0.0001395 respectively. Other parameters were 
c = 1, T = 0.0654, and D, = D, = 0.1. Waves for sin(u) < 1 are propagating waves, while 
waves having sin(u) > 1 are evanescent. The data points are measured values of the reflection 
coefficient for w = 1. 

10-33 
0.925 0.950 0.975 1.000 I.025 1.050 I.C 

Sin(u) 

FIG. 3. The reflection coefficient in the neighborhood of the singular point sin(u) = 1 is 
presented for the boundary condition described in Fig. 2. The data points are measured values 
of the reflection coefficient for o = 1. The data point at sin(u) = 1.033 was obtained with D, = 
Du = 0.095 rather than D, = D, = 0.1 which was used for the other points in Figs. 2 and 3. 



78 E. L. LINDMAN 

VI. CONCLUSION 

Boundary conditions which act like an infinite region of free space in contact 
with the computational region can be constructed using projection operators. These 
operators use past data at the boundary which are processed in the form of the 
updating of three to six wave equations at the boundary. Reflection coefficients 
less than 1% over a wide range of angles and frequencies are obtained; and evanes- 
cent waves can be handled with equivalent accuracy. At the same time externally 
specified waves may be launched into the computational region. The simplest 
procedure, which involves updating three wave equations at the boundary is 
nominally good for propagating waves only and for angles up to 89”. In practice, 
however, it is adequate for angles up to 60” or 70” when amplitude fluctuations lead 
to frequency shifts of &J/W 5 0.1. A more complicated procedure involving the 
updating of six wave equations at the boundary handles both propagating and 
evanescent waves correctly and hence, does not suffer from the above restrictions. 
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